If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+58p+14=0
a = 8; b = 58; c = +14;
Δ = b2-4ac
Δ = 582-4·8·14
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-54}{2*8}=\frac{-112}{16} =-7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+54}{2*8}=\frac{-4}{16} =-1/4 $
| 3*4^x=2^(2x+1) | | x-(1/3)=48,000 | | ?x?=385 | | 19d-19d+d=13 | | 3x-51=5x-5 | | -30,000+1600t-16t^2=0 | | xx16=18 | | 3*4^x=2^2x+1 | | 4z^2+23z-6=0 | | 6t-6t+t=17 | | 1.4+x=7 | | f/2-22=-25 | | -6(5-7x)=-198 | | 4d^2-25d+6=0 | | v^2+12v-13=0 | | -8+5x=-14+x+4+3x | | 656=-8(-2+8x) | | -9s-15=-6 | | 4x5=45 | | j^2+14j+49=0 | | 3j^2+19j+6=0 | | 3x-46=3(x+2) | | 14z-11z+2z-4z=17 | | 8j^2+15j-2=0 | | 3w-2w+w=10 | | -15=-8x-7+7x | | 2d-18=3 | | 10t+-6t-t-2t-4t=15 | | -370=10(10a-7) | | (x+3)=(3x+1) | | -15.09+r=9.085 | | 6x+3-5x-5=-2 |